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Background and Motivation

• EEG microstates were described as a broad-band phenomenon but
typically extracted from 2-20 Hz or 1-40 Hz band of interest. Several
microstates were repeatedly observed in many previous studies.

• Although the microstate model allows any type of temporal dynam-
ics behind a microstate as long as the dynamics remain stable, the
common practice did not exploit this possibility.

• The aim of the study is to explore the EEG microstates phenomenon
at different time scales to gain insights on the frequency composition
of microstates.

The EEG Microstate Model
Resting-state, spontaneous EEG activity can be parsed into a lim-
ited number of scalp potential maps with different intensity at each
time point as formulated:

Y = XA + E (1)

where Y ∈ Rn×t is the matrix of measured EEG signals, X ∈ Rn×k

is the matrix of potential maps, A ∈ R k×t is the activation/intensity
matrix, E ∈ Rn×t is the noise assumed to be IID and Gaussian. n,
k, t are the number of channels, number of prototypical maps and
number of time samples respectively.
The resultant maps were found to remain quasi-stable for around
60-120 ms before transiting to another map, and named microstates.
4 maps were repeatedly identified across many previous studies [1]
(referred as ”prototypical maps” afterwards):

Figure 1: 4 prototypical maps. Left to right: Class A, B, C, D.
• Only one microstate is assumed to be active at a timepoint.
• Does not limit the frequency of underlying oscillators as long as

they share similar dynamics.

Data and Methods

• 22 young [12F, age 20.7 (1.6)], 24 old [14F, age 72.3 (3.4)] subjects;
native Cantonese speaker without known neurological disorders.

• 160 seconds of eyes-closed resting-state EEG.
Analysis flow:
1 Highpass-filtered at 1 Hz and eyes artifacts removal by ICA.
2 Decomposition of signals via noise-assisted multivariate empirical
mode decomposition (NA-MEMD) [2].

3 Microstate segmentation at different time scales via adaptive k-means
clustering algorithm [3]. Clustered maps were backfitted to the orig-
inal signals to calculate the global explained variance (GEV).

Empirical Mode Decomposition

For a real signal x(t), the univariate EMD finds a set of N intrinsic
mode function (IMFs) ck(t)N

k=1 and a monotonic residue r:

x(t) =
N∑

k=1
ck(t) + r (2)

• The decomposition is completely data-driven and is designed for
nonlinear, nonstationary signals such as EEG.

• The IMFs extracted are described as “monocomponent” that os-
cillate in a narrow range of frequency. One might understand the
decomposition as a bandpass filter.

• In this study, the multivariate version NA-MEMD was employed.

Microstate Analysis Flow

Definition of Global Field Power (GFP) and Global Explained Variance (GEV):

GFPt =

√√√√√1
n

N∑
i=1

x2
i GEV =

∑T
t=1(GFPt × Corrx,y)2∑T

t=1(GFPt)2

where x, y are the scalp maps and microstate maps at time point t. xi refers to the value of x at channel i.
Corr refers to the Pearson correlation.

Results - Microstates Maps extracted at different time scales

Figure 2: Microstates extracted using proposed and existing approaches.

Results and Discussion

Table 1: Summary table of microstates segmentation, (): uncertain categorization

Elderly Control Young Control
Signal Freq (Hz) GEV (%) Maps Freq (Hz) GEV (%) Maps
IMF 1 169.43 (5.26) 36.52 (8.01) (A),(B) 167.38 (5.38) 34.89 (7.47) (A),(B)
IMF 2 95.50 (4.04) 36.14 (9.29) NA 95.87 (7.80) 35.06 (9.66) NA
IMF 3 53.09 (4.91) 33.13 (7.47) (C) 53.30 (4.82) 31.24 (8.22) (C)
IMF 4 29.03 (3.54) 41.69 (10.51) A,B 29.89 (5.04) 39.50 (9.70) A,B
IMF 5 16.70 (2.01) 54.37 (9.99) A,B,C,D 17.11 (3.42) 59.89 (14.49) A,B,C,D
IMF 6 9.33 (0.63) 61.51 (10.07) A,B,C,D 9.82 (1.28) 64.79 (11.74) A,B,C
IMF 7 4.80 (0.73) 47.25 (9.25) A,B,C,D 5.30 (1.05) 50.21 (12.04) A,B,D
IMF 8 2.46 (0.64) 39.74 (10.44) A,B,D 2.92 (0.53) 43.55 (12.92) A,B,D
1-40 Hz NA 49.36 (9.65) A,B,C NA 51.97 (15.22) A,B,C,D
2-20 Hz NA 52.94 (10.01) A,B,C NA 55.71 (14.71) A,B,C,D

• In common practice, microstate analyses were done using bandpass-filtered EEG from (1-40)/(2-20) Hz.
Our results showed that the 4 prototypical maps might not share similar time scales, with some maps
being more prevalent across multiple time scales and some being more frequency-specific.

• The GEV peaked at IMF6 (64.8%) and the value is higher than that from common practice, suggesting
that EEG microstates are more stable in a particular time scale.

• The existing microstates extraction did not reproduce all 4 prototypical maps in elderly control. On the
other hand, all 4 maps could be observed from IMF5 in both groups, suggesting that the present approach
provided better localization of the prototypical maps.

• The presence of similar maps across both subject groups in IMF1/2 (not shown in figure) was interesting
as typically only 1-50 Hz EEG was considered as informative. The underlying oscillators which generate
the EEG signals could share the same dynamics in such a high frequency range.

• The reported GEV value is just barely comparable to many of the previous studies in which the GEV
reported can be higher than 80%. This might showed that 4 maps were insufficient to account for the
additional variances introduced by the expansion of the analysis to different time scales.

Associations between EEG microstates and resting-state networks

Several previous studies revealed the fMRI correlate of EEG microstates [1]:

A: Auditory network
B: Visual network
C: Saliency network
D: Attention network

Observations:
• A and B: observed together in both subject groups in a wider range of

frequency (IMF 4-8).
• C and D: did not always show up; were seldom observed in both groups at

the same time (only in IMF5).
The frequency-specific characteristics of the microstate maps could provide insights on the utilization of
different oscillations within a particular network. With C and D more related to the cognitive domain,
the expansion of microstates analysis to multiple time scales might offer a more detailed inspection of
age-related changes.

Conclusion

• A data-driven decomposition technique was utilized to conduct microstate analyses on multiple time scales.
• The 4 prototypical maps may only reflect the dynamics of a particular time scale.
• The presence of common maps (other than prototypical maps) across groups in broad frequency range

suggested different underlying dynamics in different frequencies.
• The EEG microstates might be described as “broad-band”, but it should not be limited to the 4 over-

whelmingly reported prototypical maps.
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